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By deforming a given region of phase space—occupied by some unknown eigenfunctions one wishes to
find—into a standard, integrable region, effective reductions in basis set size can be achieved. In one-
dimensional problems we are able to achi®C=1+0O(#%), whereB is the basis set size ar@d is the
number of “converged” eigenfunctions. This result is confirmed by numerical examples, which also indicate
exponential convergence as the basis set size is increased. In higher dimensions we prove that such an
optimistic result is impossible; we expect that the best one can do in this c&kCisa+o(1l), where
a>1 has a geometric interpretation in terms of ratios of volumes in phase space.
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[. INTRODUCTION standard turning point structure, plus correction terf#s.
point transformation is a special case of a canonical transfor-

In this paper we develop a strategy which is based omation in which the nev is a function only of the oldy.)
mapping regions of the classical phase space into one afhe same point transformation will emerge in our one-
other, for optimizing basis sets for diagonalizing quantumdimensional analysis below. It seems, however, that the
Hamiltonians. The goal is to minimize the basis set sizemethod of comparison equations is not usually viewed from
when a quantum Hamiltonian must be solved by numericad phase space standpoint.
means, that is, by finding the eigenvectors of its matrix rep- Another example arises in the method of distributed
resentation in some truncated basis. The selection of the ofsaussiang5], which uses an array of Gaussian wave packets
timized basis set is based on semiclassical notions, but thie configuration space as a nonorthonormal basis. The Gaus-
method we develop is not a semiclassical approximationsians are unmodulatgthat is, their momentum expectation
since the quantum Hamiltonian is ultimately diagonalized invalues are zepo In this method one can use a uniform array
a complete and orthonormal basis. Semiclassical notionsf Gaussians of equal width, but in one-dimensional prob-
arise, however, because both the basis set and the collectitems there is an alternative, or “semiclassical,” spacing rule
of unknown eigenfunctions that one wishes to find are repthat reduces the basis set size. Under the semiclassical spac-
resented by regions in the classical phase space. When tirgg rule, the Gaussians are spaced nonuniformly, and their
region occupied by the basis set covers the region occupiedidths must also be nonuniform in a prescribed manner. As it
by the unknown eigenfunctions with a sufficient margin, theturns out, the semiclassical spacing rule emerges by perform-
unknown eigenfunctions will be well converged in that basis.ing a canonical transformation on the phase space of the
This paper explores the element of flexibility inherent in us-original system, which transforms the original oval of the
ing canonical transformations to map one region of phasene-dimensional oscillator one is trying to solve into a rect-
space into another, thereby transforming standard basis sedsgle (the phase space region for a particle in a)o@bis
into new ones that are more efficient for covering a giventransformation is singular at the turning points, so in later
region of phase space. versions of the method of distributed Gaussiggighe trans-

In view of the practical importance of diagonalizing formation is softened out at the turning points. There does
Hamiltonian matrices and the rapidly increasing computanot seem to exist a good multidimensional generalization of
tional effort as a function of the basis set size, the problem othe semiclassical spacing rule, a fact which is probably re-
optimizing the basis set for a given quantum Hamiltonian islated to the impossibility of transforming a nonintegrable
one that has attracted some attention. The importance of thisvel set into an integrable oria fact discussed belgwAs
issue is not restricted to bound state calculations, since poptiar as we know, this point of view regarding the semiclassi-
lar methods for doing scattering calculations involve repeti-cal spacing rule for distributed Gaussigoese which relates
tive diagonalizations of the Hamiltonian restricted to a sub-t to a canonical transformation that transforms the energy
manifold of configuration spacdthe hypersphere or a contour into a standard shgpe new, but it is not far beneath
quotient space thereof1-3]. All the methods for basis set the surface in Ref[5]. More recent work on distributed
optimization that we are aware of involve or are elucidatedGaussiang7] (involving random distributionsraises new
by phase space concepts, although this has often not beeonsiderations, which, however, are outside the main thrust
explicitly acknowledged. Moreover, the specific approachof this paper.
studied in this paper, of transforming phase space regions A related idea has been pursued by Gy&)B] in applica-
into a standard region, lies behind several methods—bottions to solid state physics. Gygi considers point transforma-
semiclassical and exact—which have been used in the pastions in three-dimensional configuration space that preserve

For example, in the semiclassical method of comparisorthe periodicity of a lattice, but reduce the size of the basis set
equationg 4] a point transformation is used to transform arequired in quantum calculations. Special attention is given
one-dimensional problem into a solvable problem with ato density functional methods. Gygi uses a variational
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principle to optimize the point transformation, which in his approximation(one which uses the Wigner-Weyl correspon-
applications can be expanded in a Fourier series. But, hdence and carries expansions only to lowest orddn).iri-
does not take any semiclassical ideas into account or develamlly, we mention the study of optimized, nonorthonormal,
the phase space point of view, as far as we know. For exGaussian bases in RéfL6], which achieves a very high ef-
ample, it is not clear how his variational principle is relatedficiency in sample problems, comparable to the efficiency we
to the volume of the energy shell in the six-dimensionalachieve in this paper, but at the expense of near linear de-
phase space. Nevertheless, effective reductions in basis gendencies of the basis states.
size are achieved, and in any case, regardless of interpreta- Another approach that attempts to directly target a desired
tion, it may be that point transformations are the only practegion of phase space is the one that uses lattices of states in
tical means for transforming phase space regions. phase space. The lattices are created by taking discrete sub-
In another study, Fattal, Baer, and Koslpf0] have ex- groups of some continuous group that supports coherent
amined point transformations that improve the efficiency of astates, in the generalized sense of Perelefdidd. If the
Fourier series basis for solving quantum problems. Theseleisenberg-Weyl group is chosen, then we obtain rectangu-
authors emphasize the phase space point of view, and atar lattices of state&coherent states in the usual sefk8), if
explicit about transforming a complicated phase space regiothe “fiducial state” is Gaussignin phase space. If the
into a rectangléa standard form covered by a Fourier seriesdilation-translation group is used, then we obtain wavelets,
basig. In their paper, they do not attempt to find the exactin the usual sense of the word.
transformation that will produce a desired shape of the re- The idea of using rectangular lattices of coherent states in
gion in the target phase space, even for one-dimension@hase space as a basis set has a long history, which goes back
problems. Instead, they work with a specific transformationto von Neumann19] and continues to the present tiffz90].
which is apparently obtained heuristically, and apply it toOne study that has used such lattices for quantum calcula-
several model problems. tions is that of Davis and Hell¢21]. Although much can be
This approach is improved upon in a later pafEt], in  said about this approach, it does not usually involve trans-
which the authors study molecular bound states near dissderming phase space regions, and so lies outside the main
ciation in potentials with the asymptotic behavigr- 1/r". line of development of this paper. We merely remark that it
This paper deals with coordinate transformations based botseems to us that lattices of coherent states in phase space are
on bounding potentials with the same asymptotic behavior asot competitive with other methods for minimizing basis set
the exact potential as well as on the exact potential itself. Irsize, especially in multidimensional probleins spite of the
both cases, either the bounding or exact phase space regioraitractiveness of the basic igedVe will say more about
transformed into a rectangle. The authors advocate a “Foueoherent state lattices in future publications.
rier grid method” (essentially a sinc-type discrete variable  The subject of wavelef22—25 is an important develop-
representationfor solving the transformed wave equation, ment in applied mathematics in recent years, which has had a
although it appears that they only actually solve the transbig impact on signal processing and other areas. Wavelets
formed wave equation for transformations based on boundhave also been used for few-body quantum calculations
ing potentials at zero total energy, for which the action inte{26,27], as well as in many-body density functional calcula-
gral can be evaluated in simple analytic form. This is ations[28]. The idea of resolving wave functions on different
reasonable approach in practice, because the exact action seales is closely related to phase space representations of
tegrals are often difficult, but it means that one does not havevave functions, as is made clear in the founding literature on
a test of the maximum possible efficiency of the method ofwavelets. The formalism of multiresolution analysis is an
phase space mapping. elegant way of implementing this idea. However, the wave-
Several novel approaches to the problem of optimizingets that are used in multiresolution analysis are nonanalytic
basis sets have been adopted by Poifile2—-14 and by functions possessing long-ran¢mgebraig tails in momen-
Poirier and Light[15,16. In Ref. [12], Poirier develops a tum space. Although the order may be high, these tails will
variational criterion for the “weakly” separable basis that is ultimately result in power lavinot exponentiglconvergence
as close as possible to the eigenbasis of a given Hamiltonigior analytic eigenfunctions, and therefore will ultimately re-
(that is, the basis is optimized for this HamiltonjafThis  sult in slower convergence than the analytic basis functions
theory is applied to reactive scattering in Rdf3]. Although  discussed below. Moreover, as far as we know, wavelets have
this part of the work does not involve phase space conceptsot been used in combination with transformations of phase
very much, such concepts enter in a much more importargpace.
way in Ref.[15], which uses “quasiclassicalphase spage Our main results are presented in Sec. Il. We begin with
approximations to find the optimal “strongly” separable an outline of the method. Although the basic ideas have been
bases for a variety of multidimensional Hamiltonians. presented previously, most explicitly by Fattal, Baer, and Ko-
(Strongly separable bases are Cartesian products of onsloff [10] and by Kokooulineet al. [11], these authors dis-
dimensional bases, which can be cast into discrete variableussed only the case in which the target region is a rectangle,
representation form for efficient computation$his paper while we generalize to transformations between arbitrary re-
also develops deformed grids for dealing with multidimen-gions of a fixed topology, including the multidimensional
sional problems, and in this respect is similar to the work ofcase. Moreover the presentation of these authors of the idea
Gygi. Poirier has further developed the phase space point aff phase space mapping is tangled up with the mapped Fou-
view in Ref.[14], in which he develops the “quasiclassical” rier method for solving the transformed wave equation, and
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these two parts of the theory are logically distinct. In addi- What is the minimum value oB that can be achieved?
tion, we discuss quite a few issues not dealt with by thes@he answer depends on the basis. Obviously if we were
authors, including the importance of the analyticity of theclever enough to choose the exact eigenbasis of the Hamil-

transformation, the relation between classical canonicajpnjanH, or a basis such that the fitStbasis functions were
transformations and unitary transformations, the suggestiownear combinations of the first exact eigenfunctions d#
of using the metaplectic operators, the analyticity of thethen the answer would bB=C. In other cases we ha\B’e

transformation functioiX(x) even at the tgrning points, for-. >C, exact the ratidd/C=1 is a measure of the goodness of
mulas for the Jacobian at the turning points, and the relatlogur ’choice

of th?_ presEnt rTlettEOd to theld) metfh(l)td'tOf Cor_npan?ont ‘ We will suppose tha€ is large enough that semiclassical
equations. or ail these reasons we Telt it was importan easoning can be used to guide us in the choice of a basis set.
present an mdependent af‘d self-contained presentation OftI particular, we use the semiclassical rule that all quantum
basic ideas, Wh'Ch we do in Sec_s. Il Aand ”. B. Af'ger this we states occupy a region of phase space with volbmevhere
present numerical results on using harmonic oscillator bas

. =2mh. andf is the number of degrees of freedom. This
to solve the Morse oscillator, and we present a theorem tha . . . 9 . i
shows that optimal phase space coverage, in the senéﬁle applies both to the un_known eigenstateslofie wish to
achieved for the one-dimensional case, is impossible in gerind as well as to the basis states.

eral in the multidimensional case. Conclusions are presented FOF €xample, in a one-dimensional oscillator, we can view
in Sec. IlI the firstC energy eigenstates as occupying the region of the

classical phase space inside the okbik,p) =E,, whereE,
is chosen in such a way that the area enclosed by the orbit is
Ch. HereH(x,p) is the classical Hamiltonian corresponding

to the quantum Hamiltoniahl, where the hat distinguishes

In this section we begin by outlining the basic idea of thequantum operator from its classical counterpart. On the other
method of phase space deformation for optimizing basis setgand, many common choices of basis sets are eigenbases of
in quantum mechanics, and by discussing a simple examplgome analytically solvable operator, which itself may be a
Next we develop the theory of phase space deformation fofamiltonian (the harmonic oscillator Hamiltonian, for ex-
one-dimensional problems, which is based on finding a Coémmé- Call this operatoD, the “basis generating opera-
ordinate transformatio_b(zx(x) that transforms a given re- tor,” which corresponds to’ the classical functi@(x,p).
gion of phase space into a standard regftam example, a Then theB basis functions can be thought of as occupying

circle). This part of the presentation should be compared t he interior of th oD -D hereD. is ch
that of Fattal, Baer, and KosloffLO] and Kokooulineet al. ?nestjr::tr(]a r;O\rNgytchtr?r?Ieoreé?(o,rr:)has g,ﬁv; erelo IS chosen

[11], who treat similar subjects. Next we apply this theory to~ | "o & Fip oo regions, the minimum valueBafieeded
the Morse oscillator. We work out the transformation analyti- ) - .

cally, as far as possible, and then use it to reduce the basis 98t f'”?’ c conv_erged_ e|genvallues ¢ has a geometrlcal
size required in numerical work. We find that we are able tgMeaning. HoldingC fixed, we increas@ and consider the
achieve ratiosB/C quite close to unity. We also examine €rrors in the firsC eigenvalues oH. The smallest value of
various approximate schemes for deforming phase spac, for which all C eigenvalues o are even qualitatively
which are easier to implement than the exact one. Some d@orrect is the one for which the regidb(x,p)=D, just
these give substantial improvements in basis set size, whickpvers the regiotd (x,p) =Ey. Then, as we increas® be-
however, are not as great as in the exact case. Finally, wgond this value, we find that the eigenvalues converge expo-
present a theorem on the multidimensional case, whichentially in the basis set size.

shows that in general an exact mapping of a given phase Figure 1 illustrates these ideas. The cul® in the fig-
space region into a standard regidor example, a spheyés  ure is the contour in the classical phase space of the Morse
impossible. oscillator Hamiltonian

Il. THE METHOD OF PHASE SPACE DEFORMATION

P>

A. Outline of the basic idea H(x,p)= 7+(e —1)-1, @

Consider a quantum Hamiltonig of a few degrees of
freedom. Suppose for simplicity that it is desired to find thewhereH(x,p)=Ey=—0.1 in the figure(E=—1 at the bot-
first C converged eigenvalues, where “converged” means tdaom of the well, andE=0 is the dissociation energyThe
some prescribed accuracy. A basis set is chosen in terms ofirve is the energy shell or level set of the Morse Hamil-
which the Hamiltonian matrix can be computed. The basigonian. (In this paper, “level set of the Hamiltonian” and
set is truncated at some finite numbiof basis functions, “energy shell” are synonymous. In one dimension, these are
whereupon the eigenvalues of the Hamiltonian are estimatetthe same as a classical orbit of a given energiie chosen
by the eigenvalues of the truncat®ix B matrix. The sizeB  value ofE, is sufficiently close to dissociation that the clas-
of the truncation must be chosen large enough so that theical motion of the Morse oscillator is strongly anharmonic,
first C eigenvalues of the matrix are converged to the preas evidenced by the stretched and pointed shape of the con-
scribed accuracy. The computational effort is a strongly intour. The number of quantum states contained inside this
creasing function oB. energy shell is the area divided by the value of whicHin
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frequency from the first oscillator and achieves a ratio of

P areas of approximately 2:1, which is not too bad for a one-
dimensional problem.

The idea of using shifted and scaled harmonic oscillators
HO, to improve basis set efficiency is an old one, which evidently
has been used in multidimensional scattering problems, reac-
tion path Hamiltonians, and model problems. As far as we
HO, know, however, these approaches have not made use of the
notion of the covering of a desired region of phase space by
MO a basis set, which we believe is a fundamental issue in basis
set efficiency.
\ z For any nonzero value of, the actual number of basis

states required is larger than that estimated by the enclosed
area, because the actual wave functions tunnel into the clas-
sical forbidden regiongboth in configuration space and mo-
mentum spage However, the wave functions die off expo-
nentially in the tunneling regions, giving us exponential
convergence aB is increased beyond the area estimate.

The following is a semiclassical way of understanding the
exponential convergence that sets inBamcreases after the
area of the classical oscillator is covered. Let the elaid-
sumed unknowneigenstates of the problem we are trying to

FIG. 1. Phase space contours of classical Hamiltonians. Contoufg|ye (the Morse oscillator in the examplée |n>, and the
MO is a Morse oscillator with an energy &=—0.1. The large  pasjs states bér). Then the expansion coefficients of the

circle HO; is the_cont_our of a harmonic oscillator with pgrameters exact eigenstates in terms of the basis state$cd|re>. If we
based on small vibrations at the bottom of the Morse oscillator well.

The ellipseHO, is the contour of a different harmonic oscillator, evall.Jate.thls scalar produqt by usm_g the Semldass!cal ap-
with shifted origin and frequency. Both harmonic oscillator con- prOX|mat|0ns to_ the exa.ct elgerlfunctlons and th? basis func-
tours are chosen to be just large enough to cover the area inside tHoNS: then the integral is dominated by the stationary phase
Morse oscillator contour. points of the integrand. But these stationary phase points are
geometrically just the intersections of the cunkes E, for

the Hamiltonian with unknown eigenfunctions abd=D,

for the basis generating operatonore generally, they are
%he intersections of Lagrangian manifolds in phase space

the dimensionless units used in Ef)] depends on the prob-
lem, that is, the type of molecular bond being modeled by th

Morse oscillator, the masses o_f the atoms, etc. In any castg]). However. if the classical conto®=D . lies outside
the number of quantum states is proportional to the area. the contourH=,E then there are nérea) Lfntersections
n» .

A simple strategy for finding the energy levels of the There will, however, be complex ones, corresponding to
guantum Morse oscillator is to use a harmonic oscillator ba- ' ' P ' P 9

sis, which is centered at the bottom of the well of the Morsegomplex ?CIIOI’ISS Wh?jseTrl]maglnary parts mcfrf_ea_\set as the
potential(at x=0 in the figure with the same frequency as asis contours expand. Thus, expansion coefficicals),

that of small vibrations in the Morse potential. The Hamil- which go as?ism' decrease e>_<p_onentia|ly. Noti_ce that this
tonian of this harmonic oscillator is argument relies on the analyticity of the functioHgx, p)

andD(x,p); indeed, exponential convergence does not usu-
ally hold when either function has singularitiedivergences
p2 ) or discontinuities in some derivative of the potential, for ex-
D(x,p)=?+x -1 @ ample.
To return to our example, Fig. 1 shows that even the best
choice of harmonic oscillator basis will have some wasted
We estimate the number of basis states needed with this basisea, because the Morse level sets are not ellipses. If, how-
by finding the smallest contour valil, such that the region ever, we could perform a canonical transformation on the
inside D(x,p)=Dy just covers the region insidél(x,p) phase space of the Morse oscillator, which would transform
=Ey. The level seD(x,p) =Dy is the large circleHO, in  the energy shelH=E, into (say a circle, then a circular
Fig. 1. In the limitz—0, the ratioB/C approaches the ratio harmonic oscillator basis would precisely cover the interior
of the area of the circl® =D to that enclosed by the Morse of the transformed Morse oscillator energy shell. Notice that
contourH=Ej,. we are not trying to transform the Morse oscillator into a
It is obvious from the figure that this ratio is relatively harmonic oscillator; this cannot be done in any case, since
unfavorable, because of the large amount of “wasted area.the harmonic oscillator has a constant frequency and the
A different harmonic oscillator basis would do better, such asMorse oscillator has a frequency that depends on the ampli-
the one with the elliptical contodd O, in Fig. 1. This sec- tude. All we are trying to do is to transform one specific
ond harmonic oscillator has a shifted origin and a differentcontour of the Morse oscillatoH=E, into a circle. The
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other level sets of the Morse oscillator, fef<E, and H
>E,, will have images under the canonical transformation fﬁ P(x,Eq)dx= % P(X,Dg)dX, 4
that are not circles.

More generally, we may seek a canonical transformationwhere p(x,E,) and P(X,D,) are the respective local mo-
that will transform the level set of some classical Hamil- menta
tonian whose quantum counterpart we wish to solve out to
some energ¥, into the level set of some conveniently solv- p(x,Eq)=+v2mM[Eqg—V(X)], P(X,Dg)=+2[Dy—U(X)].
able problem. There is then the practical matter of using the (5)
eigenbasis of the solvable problem in the transformed vari- _ _ _
ables to solve the original quantum problem in the originalThus, Eq.(4) definesD, as a function of,. It is assumed
variables. We may wish to carry out this program in one OrthatD(x,P) has a level set of the required area, and that it is

more degrees of freedom. a topological circle. Oncd, is known, we can find the
turning points of the curv® (X,P)=D,, call themX, and
B. Phase space deformation in one dimension X1 (Xo<Xy).

.. The functional form ofH changes upon carrying out the
We now develop the theory of phase space deformation ianonical transformation. We call the new functional form
one dimension. The multidimensional case raises new ISSU§S( X, P), so that
and will be discussed below. We begin with a Hamiltorihn
whose classical counterpart i(x,p) and a conveniently K(X,P)=HX(X,P),p(X,P)). (6)

solvable HamiltonianD whose classical counterpart is ) )
D(X,P). The use of capitalized variabléX,P) for the argu- By construction, the level sét(X,P)=E, is the same curve

ments of D will be explained momentarily. As explained I" the new phase space as the levelB€K,P)=D,. The
above, the basis functions will be the eigenfunctionof two functionsK (X, P) andD(X, P) are not expected to have

A ) 9 other level sets in common, howev@mnly for the contour
For simplicity we will assume that botid and D have

kinetic-plus-potential form valuesg, andDo).
pius-p Since our entire approach is based on semiclassical no-

p2 p2 tions, in which the wave function varies on a scale much
H(x,p)=%+V(x), D(X,P)=7+U(X), 3 smaller than that of the classical Hamiltonian, we require
that our canonical transformation does not introduce any

with analytic potentiald/(x) andU(X), although our results Short scale lengths of its own. This means that our canonical
are easily generalized to analytic Hamiltonians of a mordransformation should be analytiat least in the region of
general form. Many of the steps below are independent ofterest and independent df. In particular, we must exclude
the specific form of these Hamiltonians. The variatiég®) ~ canonical transformations that have discontinuities, either in

are assumed to be suitably dimensionless, hence the abseripg transformation itself or in one of its derivatives. One case
of a mass parameter R(X,P). in practice where this condition has not been met is in ap-

Now suppose that some enerBy is given, such that it is proaches in v_vhich the standard region in the transformed
desired to find all energy eigenvalues and eigenfunctions dfhase space is a rectangle. )
H below E,. The level setH(x,p)=E, of the classical Our strategy will be to use the gigenf_unctions!]bf the
Hamiltonian is some curve in phase space with some topofduantum analog db(X,P), as a basis to find the eigenfunc-
ogy. Because of the time-reversal invariancedothis curve  tions of K, the quantum analog df(X,P), and hence the
is symmetric about thg axis. In general, this curve consists eigenfunctions ofi. However, to pursue this idea we must
of one or more disconnected pieces. We assume that one phve the quantum analog of the classical canonical transfor-
these pieces is a topological circle, that is, an oval of somenation (x,p)— (X,P), which would be some unitary trans-
kind centered on th& axis, with two turning points that we formation. In general, the relationship between canonical
denote byx, andX; (Xo<X;). These are the roots inof  transformations in classical mechanics and unitary transfor-
H(x,0)=E,. If there are other disconnected pieces of themations in quantum mechanics is not simple, due to ordering
level setH(x,p) =E,, then we have tunneling from one os- issues, topological matters, phase factors, higher order terms
cillatory region(betweenx, andx,) to perhaps other oscil- in #, etc. In cases where the classical transformation is
latory regions or perhaps unboundedattering regions. For  smooth and certain topological conditions are met, Miller
simplicity, we will assume for now that the level skt  [30] has presented a theory that associates a canonical trans-
=E, consists only of a single topological circle, so that thereformation with a semiclassical approximation to the matrix
is no tunneling. We will comment below about more compli- elements of a corresponding unitary transformation. How-
cated cases. ever, Miller's matrix elements have caustics and do not ex-

We now seek a canonical transformation) — (X,P) actly satisfy the unitarity conditiong&hey do so only in a
such that the level sail(x,p)=E, in the old variables is semiclassical senseTherefore, they are not suitable for our
mapped into a level set @ (X,P)=Dg in the new variables purposes where it is necessary to carry out an exact unitary
for some value oD,. Since canonical transformations pre- transformation on wave functions.
serve area, the area of the old level set must be equal to the Therefore, we must restrict the consideration to canonical
area of the new one transformations that correspond semiclassically to some
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known unitary transformation. The correspondence need ndhere would be many possible solutions. However, if we re-
be exact(for example, there might be higher order terms instrict to point transformations, then the solution is essentially
), because our purpose is merely to optimize the basis. Butnique, as we will show now.
the corresponding transformation on the quantum wave func- Let us seek a point transformatiof(x) such that the
tions should be exactly unitary, and, as a practical matter, itevel setH(x,p)=E, is mapped into the level s&@(X,P)
should be easy to implement. =D,. The transformation should also map turning points

There are two classes of canonical transformations thahto one anotherX(xg) =X andX(x;)=X;. In view of Eq.
come to mind satisfying these requirements. The first con¢7), the transformation functioX(x) must satisfy the differ-
sists of the point transformations, which in the present notaential equation
tion are canonical transformations of the form

dX  p(x,Ep)
X=X(x), P=(ax/aX)p, @ X~ P(X.Dg)’ (10

whereX(x) is a given function, which are generated by the The single constant of integration is fixed by the condition
type-2 generating functior31] F,(x,P)=PX(x). Point  X(xg)=Xy, which gives
transformations can be regarded as merely changes of coor-

dinates in configuration space, which are promoted into ca- x (X

nonical transformations by appending the momentum trans- XOp(x,EO)dx— XOP(X'DO)dX' (1D
formation law[the second of Eqg7)]. The latter is written

more transparently gsdx=P dX. This is an implicit solution foiX(x). The right turning point

If we denote the old and new wave functions under acondition X(x;) =X, is not an extra condition, but rather is
point transformation by/(x) and W (X), and demand that satisfied automatically in view of Edq4).
the normalization integrals transform according to Equation(11) definesX(x) between the turning points,

but for transforming the wave function as in £§) we need
X(x) for all x (or at least foix far enough outside the turnin
j dx ‘/’(X)|2:J dX|W(X)[%, ®) pc()in)ts thatys becomes negligibe It tu?ns out that the solu—g
tion (11) has a well behaved analytic continuation outside the
then the relation between the old and new wave functions iturning points, although the differential equatid®) itself is
quite singular at the turning points, as are all of its solutions
P(x)=3Y2P (X), (9)  except the one given by Eqll), with the value ofD, de-
termined by Eq(4).
where J=9X/dx is the Jacobian of the transformation. We Regarding singularities, consider first the left turning
will assume that the transformatiof(x) is monotonically — pointX,. If the transformation functioX(x) does not satisfy
increasing, s@>0 everywhere. the conditionX(xg) = Xy, thendX/dx vanishes ak=x, and

The second class consists of the linear canonical transfogliverges aiX=2X,. Thus the conditiorX(xy) =X, is neces-
mations, which correspond in quantum mechanics to the unisary for the point transformation to be smooth and single
tary metaplectic transformatioi82]. The point transforma- valued. Similarly, if the value oD, does not satisfy the area
tions form a rather restricted set of canonical condition(4) (perhaps due to numerical erypthen when the
transformations, but by composing them with linear canoniintegrals in Eq.(11) are carried to the right turning point
cal transformations in various orders it is possible to generatthere will be zeros or infinities i X/dx.

a much larger sdt33]. However, the action of the metaplec-  However, if the turning point conditions are satisfied, then
tic operators on wave functions is given by an integral transalthough bothp and P go to zero at a turning point, their
form, which at first sight seems more difficult to use than Eq.ratio remains finite and well behaved as the turning point is
(9), although probably fast metaplectic transforms could beapproached. In fact, by expanding both{x) and U(X)
implemented. Also, it would seem that linear canonical transabout the turning point and taking the limit, it is easy to show
formations would complicate the computation of matrix ele-that the Jacobian approaches the value

ments of the potential energy.

Therefore in this paper we have restricted the consider- _dax
ation to just the point transformations. This is the same class T dx
of transformations considered previously by Gygi9] and
Fattal, Baer, and Kosloff10], so we have nothing new in whereV’' andU’ are evaluated at the turning point. We will
this respect, except for a larger conceptual framework andssume tha/’ andU’ are nonzero at the turning points, so
the possibility of a larger class of transformations in futureJ has a positive value there. Similarly higher order deriva-
work. However, thinking in terms of canonical transforma- tives of X(x) can be evaluated at the turning points in terms
tions has definite advantages, as will be apparent in our disf derivatives of the two potentials, although the expressions
cussion of the multidimensional case. rapidly become complicated.

If we were to seek an unrestricted canonical transforma- The differential equatioril0) can be analytically contin-
tion that would map the given level sei(x,p)=E, into the  ued outside the turning points by choosing branches of the
level setD(X,P)=Dg, with D, defined by Eq.(4), then  square roots fop andP (now both purely imaginagysuch

1/3

mV’ (X) 12

U’ (X)
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that their real ratio approaches the vald®) as the turning which coincides with the result of carrying out the classical
points are approached from the classically forbidden regionsanonical transformatiort7) on the HamiltonianH(x,p).

In this way a single transformation functio(x) is defined, The Weyl transform provides an elegant way of making
which is analytic in all regions, classically allowed and clas-semiclassical approximations on Hamiltonians of a rather
sically forbidden. If, however, there are more than two turn-general functional formi34].

ing points, and ifx is taken as far as one of these extra

turning points, then the solutioX(x) will develop a singu- C. Results for the Morse oscillator

larity.

The transformationX(x) developed above is the same We will now test the effectiveness of the phase space

that is used in the method of comparison equatigfsfor deformation me'thod by using it' to solve the Morse oscillator.
analyzing two-turning point problemvhereD is taken to The Morse oscillator is especially usefull for our purposes,
be a harmonic oscillater The method of comparison equa- Pecause the curvel(x,p)=E, becomes increasingly dis-
tions is not able to handle systems with three or more turningCrted asko approaches the oscillator's dissociation energy.
points, for lack of a solvable comparison equation with the!NiS allows us to test the deformation method under arbi-
same turning point structure. In our method, however, largefr@rly severe deformations.

numbers of turning points are not necessarily a problem. 1he Morse oscillator Hamiltonian of Eq1) has been
Consider, for example, a double well oscillator. If the tunnel-Présented in dimensionless units in which the physical prop-

ing is deep for a given enerdg,, then the communication erties are paramgtrized By In these units, the energ?yof a
between wells may be negligible, and we can just use th@ound ort_nt satifies- 1<E<0. The exact energy eigenval-
solutionX(x) developed above for a single well. In this case €S are given by35]

we need takex only halfway to the other well, where the E.=—1(1—v2)2 17)
wave function is negligible, and we never encounter any sin- " 2 '

gularity in X(x). On the other hand, if the tunneling is shal-

low, then we can always raise the cutoff enefgyabove the is the last one before the peak of the quadratic function

top of the barrier, and we have once again a system with We 1)1 Typi
) ) . ical values of: for molecular systems range from
turning points, and both wells can be handled at once. algf)lzt] 1(;/?_ 102, corresponding to app)rloximately glO—lOO

However, this approach will not work if there is tunneling bound states. We choo&(X,P) of Eq. (3) to be the har-
to an unbounded regiofmeaning we have a resonance in a monic oscillat.or Hamiltonian, '

scattering problem For simplicity we will exclude un-
bqunded or scattering problems from our consideration in D(X,P)= P22+ X?/2. (18)
this paper.

We now transform the Schdinger equation under the
point transformation(7). The old Schrdinger equation is

wherel =(n+1/2)4 andn=0,1,...[the maximum value of

We will now use Eg.(11) to determine the function
x(X) that, for correctly choserD,, maps the level set

Hy=Ey, where H(x,p)=E, into D(X,P)=D,. At energy E,, the
p? Morse oscillator has turning pointg,=—In(1+«) and
H= %JrV()‘(), (13)  x;=—In(1—«), wherex=+/1+E,. At energyD,, the har-

monic oscillator has turning point&; = —Xy=2D,. We

with p=—i%(/3x). Then writingP=—i#(a/X) we have  definef(x)=J% p(x,Eq)dx andF(X)=J% P(X,Do)dX, so

p=JP and the operator identity that the implicit solution i (x) = F(X). ForXo<X<X; and
Xo<X<Xq, We find

PJ+JP

Jpye=J12 (14 XP w

F(X):7+Dotan’l(X/P)+ > Do, (19

Thus we can write the new Scldimger equation in the form

KW =EW, where and
A~ ~ 2 —X
.1 [PJ+JP - ) 1-e
=5 f(x)=—p+v2 sm‘l( )
K Zm( > +V(x(X)). (15) (X)=-p P
. . . PSR e *—1+k% w
We wish to solve this in the eigenbasis & =P</2 +V1-wk2sin Y ————— |+ = (1-JV1—«?)
+UX) ke ]2 '

We remark that if we use the Weyl symbol correspon- (20
dence to map quantum operators into classical functions,
then the classical Hamiltonian corresponding to 8dp) is where P=P(X,D,) and p=p(x,Ey). Equation (4) now
fixes Dy= f(x,)/m=v2(1— J1— K?).

Similarly, for X<Xy andx<xg or X>X; andx>x,, the
solution isg(x) =G(X), where

2P2

K(X,P)=T+V(X(X)), (16)
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Now we turn to the diagonalization &f in the harmonic
z oscillator basis. We will be interested in testing the conver-

gence of the eigenvalues Kf (which of course are the same

as the eigenvalues o) as the sizeB of the basis is in-
creased.

First we need the matrix elements of the potential energy
V(x(X)). In principle, these could be evaluated by any
quadrature formulésuch as Simpson’s rulsvith a sufficient
number of integration points, but nowadays in problems,
such as this, it is popular to transform to the so-called dis-
crete variable representati¢BDVR) basis[36,37. In this ba-
sis, the potential energypr any other function of only) is
diagonal to a good approximation, and the matrix elements
are trivial. It is also easy to transform back to the original
basis(the harmonic oscillator basis in this casieecause the
unitary transformation between the bases can be expressed
exactly in terms of the original basis functions evaluated at a
/ X set of DVR grid points. The latter are the zeros of a certain
one of the original basis functions. The DVR method is so

(Xl’l‘l)

(X0, 20) convenient for finding matrix elements of operators, which
depend only or¥, that we wanted to use it for our calcula-
tion.

FIG. 2. Functionx(X) that deforms théE,=—0.1 shell of the However, the DVR method for evaluating matrix ele-

Morse oscillator into a circle. Vertical and horizontal lines mark the ments introduces a certain error, because function$ affe
turning points of the harmonic oscillator and the Morse oscillator,not exactly diagonal in the DVR basis. Since the purpose of

respectively. this paper is to test the error in the method of phase space
deformation, we did not want to contaminate the results with

XP X+ P additional errors. Therefore, when we switched to the DVR

G(X)=——Doln Xy |’ (21)  Dbasis we used a larger number of DVR grid points than the

number B of harmonic oscillator basis functions we were
using. The number of DVR grid points we chose was suffi-

and ciently large that we got convergence in the matrix elements,
_ typically, this was abouB+ 10.
X_
g(x):_ﬁﬂ/ﬂn‘(ﬁﬁﬁe 1 In this manner, we determined the matrix elements of
K V(x(X)). Similarly, we determined the matrix elements of

the Jacobiad, which is also a function only ok. The matrix
—X__ 2_ M1_ .2 ’ . .
€ 1+ K" (PIV2)N1-« elements of the momentu are easy in the harmonic os-
ke X ' cillator basis. From these, by matrix multiplication, we de-
(22) termined the matrix elements of the opera®dy whose Her-

mitian part is PJ+JP)/2. Finally, squaring the matrix of

whereP= \X?— 2D, andp= y2[V(x)—Eq] the latter operator, we obtained the matrix elements of the
- - 0 - —LEol- . . iy . .

It turns out later that we will need to evaluate the functionXiN€tic energy term irk, seen in Eq(15). In these matrix
x(X) numerically. We do this by finding the roots of equa- multiplications, we used a basis whose size was somewhat
tions f(x)=F(X) or g(x)=G(X). In this process, one must larger thanB, again in order to avoid introducing extra error.

take considerable care in evaluating EG€)—(22) to avoid If one were interested in a practical algorithm, rather than

loss of precision. A related numerical difficulty appears whent€sting the method, it would probably be more convenient to

we need to evaluatgnear the turning points, due to the loss carry out the entire calculation in bases of a fixed sizeich

of precision in computing or P according to Eq(5). In fact, would have to be somewhat larger than tevalues we

it does not seem to be easy to evaluate maximum preci- quote to get th? same_accuraa.cy . . .
sion near the turning points. We have found, however, that Finally, we diagonalized the matrix to obtain approximate

the error introduced by simply using E@) did not seem to energy eigenvalues. We defmed an accuracy paranadeer
adversely affect our results. an eigenvalue to be the fractional error relative to the bottom

In spite of the numerical difficulties of evaluatind X) of the well, that is,
near the turning points, the function itself is perfectly well -
behaved there. This is shown quite clearly in Fig. 2, which is e=|E—E[/(E+1), (23
a plot of x(X) for Eo=—0.1. The turning points are indi- _
cated in the figure; were this not done, it would be impos-whereE is the exact eigenvalue artel is the approximate
sible to locate them from the plot itself. one.

+v2(1—«%) In
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FIG. 3. Excess of basis states over converged eigendtdifes
ferenceB— C) versus number of converged eigensta@esor three
different energies. Eigenstates are considered converged when the
relative errore<10~’. For givenE,C is varied by varyingi. The ge
differenceB— C is approximately constant for givef

FIG. 4. Maximum relative erroe among firstC computed ei-
nvalues as a function of basis set dize

Ey,=—0.1 and a value oh chosen to giveC=24 stateqn

In one study, we examined how the number of basis states: 0 to n=23). The number of basis states used VBas28.
B required to achieve convergence depends on the energyote the sharp decrease in accuracy for states that are not
cutoff Eq and on the number of converged eigenst&led/e  within the target region; effectively, our basis has used all its
varied C for the fixedEy by changingt. In this study, we energies for the states inside the target region, and has none
considered th€ eigenstates to be converged if the state withleft for states outside.
the maximum relative errofwhich was always the last An obvious drawback to the method we have presented so
eigenstate WittE<E,) hade<<10 ‘. The results are shown far is that the functiorx(X) is difficult to compute. In the
in Fig. 3. It turns out that the differencB—C is nearly
constant for a giverky, so we plottedB—C versusC at
different energies. As expected, it requires a larger number o I o R e B e S
basis states to converge when the cutoff en&tgys closer
to dissociation, but even &,= —0.01(a strongly distorted
oval) we findB/C~1.1 for C=60. The results can be sum-
marized by 10-4

€
ol 1+ c’ (29
1078

wherek is a constant depending @&y, but not onC. Equiva-
lently, since for fixedg, C is proportional to %, we can say
B/C=1+0(%).

In another study we examined the convergence for fixed
energy cutoffE, and fixedC (hence fixedk) as the number
of basis state® is increased. We defined,,, as the maxi-
mum value ofe, given by Eq.(23), for the firstC eigenstates. 10-16
In all cases, the maximum occurred either for the last state
(usually, or occasionally for the next to the last state. This - A ! { A s
maximum error is plotted as a function Bffor two different 0 5 10 15 20 25
cases in Fig. 4. The convergence is rapid, but apparently nc
as fast for energies nearer the separatrix, as would be ex-
pected. FIG. 5. Relative errore versus quantum number for Ey=

Finally, we present in Fig5 a plot of the relative erroé  —0.1, which corresponds to 24 bound states=(0—23). B=28
as a function of the quantum numhbefor the cutoff energy basis states were used.

10—12
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P Morse oscillator and the mapped harmonic oscillator
(markedA in the figurg in the original(x,p) phase space. It is
clear that the wasted area is due to the strong deformation of
the Morse oscillator contour, which does not fit an ellipse

/"\ very well. To cover the area of the Morse oscillator with a
A B harmonic oscillator of these parameters, the harmonic oscil-
8 lator energy must be increased to approximately,2 as
\ indicated by the contouB in the figure.

. Other linear approximationg(X) work better. For ex-
ample, by changing the two linear fit parameters, we found
an x(X) that covers the Morse oscillator with an energy of
1.7D, (this is the ellipseHO, in Fig. 1). Indeed, with#
=0.03, 54 basis states are needed to converge the 32 interior
states toe<10 3.

Finally, we investigated some nonlinear fitsxoX). One,
a combination of a quadratic and an exponential, fit particu-
larly well in the classically allowed region. Here, fdr
=0.03,B=238 states were needed to obt&r- 32 states to
FIG. 6. Harmonic oscillator coverage of the Morse oscillator for <10~ /. This is three basis states more than required by the
Eo,=—0.1. The harmonic oscillator contodrhas the same turning exactx(X), but still considerably better than any linear fit.
points and same area as the Morse oscillator cutoff contour. Har- In the problem of determining approximate fits to the
monic oscillator contouB has twice the energy of harmonic oscil- function x(X), high accuracy may not be required, but it is
lator A. This is not the most efficient harmonic oscillator for cover- important that the approximate function be smooth. For ex-
ing the Morse oscillator. ample, piecewise analytic functions would not @wving to
the nonanalyticities where the functions are pieced toggther
Thus it is not trivial to design approximate fits. We could be

case of the Morse potential we were able to do the actiofnore motiva’ged to pursue this que_stion i_f determining a large
integrals yieldingf(x) and g(x) analytically, but the final number of eigenvalues fo_r one—d!mensmnal problemsRon.
forms were not simple. For other potentials it will be impos-Weré @ common problem in practice. However, the same is-

sible to do these integrals analytically. Moreover, even give ues are certainly present in more reallsth problémmsltl-
an analytic form, the function(x) andg(x) may be subject dimensional problems on spaces of less trivial topology
to loss of precision near turning points, as we have found in
the case of the Morse potential.

On the other hand, Fig. 2 shows that the funct@X) is )
a rather featureless, monotonic function, which it should be We turn now to the multidimensional case. Our main re-
possible to approximate with functions of simple analyticSult here is to show that it is impossible, by means of any
form. Such approximations would not be as effective as théanonical transformation, to transform the levellset E, of
exactx(x) in reducing basis set Size, of course, but theya generic, multidimensional Hamiltonian SyStem into the
might still be useful. In fact, it occurred to us that even alevel setD=D, of a solvable(that is, integrable system.
crude numerical evaluation of the functiogX), say, with ~ Not surprisingly, this result depends on the impossibility of
10% accuracy, might still be very effective in reducing thetransforming nonintegrable motion into integrable motion.
basis set size. To test these ideas we studied various simpRait it is not quite as trivial as it seems, because we are not
approximations toc(X). In all of the following studies, we trying to transform a nonintegrable Hamiltonian entirely into
took Eq= —0.1. an integrable one, merely a single level set.

The simplest approximation is a linear one. Any linear As before, letH(x,p) be the classical analog of a quan-
function x(X) will map harmonic oscillators into other har- tum HamiltonianH whose eigenvalues and eigenfunctions
monic oscillators. Thus, the standard harmonic oscillatowe wish to find out to energ¢,. Now, howeverx andp are
(18) in the (X,P) phase space will correspond to another harn-dimensional vectorgtheir components are; and p;).
monic oscillator in the originalx,p) phase space, but with Similarly, D(X,P) is an integrable Hamiltonian af degrees
elliptical contours. The first example we looked at was aof freedom whose quantum counterpart we will use as a basis
straight line fit between the turning pointX{,Xy) and  generating operator. We assume tH#&k, p) is chaotic(it has
(X1,Xq) in Fig. 2. This corresponds to choosing a harmonicat least one chaotic orbit of ener@y, which would be the
oscillator back in the originalx,p) phase space that has the usual case in practigeOn the other hand) (X,P) has only
same turning points as the Morse oscillator, and the samesgular orbits(the level seD =D, is foliated into invariant
area between those turning points. In this case, we found thadri, on which the classical orbits are quasiperi¢dithen
achievinge= 103 requiredB to be about £. For compari- there does not exist any smooth canonical transformation
son, 102 accuracy could be achieved as earlyBasC us-  (x,p)—(X,P) that maps the given level sét(x,p)=E,
ing the exactx(X), as shown in Fig. 4. Figure 6 shows the into a level seD(X,P)=D, for any value ofDy.

D. The multidimensional case
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Suppose on the contrary that such a canonical transforma- I1l. CONCLUSION

tion exists, and leK(X,P) be the new _Hamlltonlan, as in We have shown that phase space concepts offer a good
Eq. (6). Then the level seK(X,P)=E, in the new phase 4y to understand the effectiveness of a basis set. In particu-
space coincides with some level §2¢X,P)=D,, for some  |ar we have used phase space concepts to construct a basis
value of Dy. These level sets have dimensionalitn21.  distinct from the actual eigenbasis of the Hamiltonian that
Let Z=(X,P) be the 4 phase space coordinates in the newcovers the target phase space with high efficiency and has
phase space, with componerf¥, w=1,....20. Consider fastexponential convergence as the basis set is expanded. We
Hamilton's equations for the two HamiltoniakqX,P) and  have also proven a theorem, which shows that optimal cov-

D(X,P). The respective flow vectors are given by era%e is not possible, in general, in the multidimensional
case.

) 9 , 9 Any study involving one-dimensional problems Bris at
Z’,é=1””ﬁzw Z’S=F’”ﬂzy, (25  best useful mainly for its suggestive value, since practical
problems take place on multidimensional configuration
spaces, often with a nontrivial topology and in the presence
) . ) of gauge fieldgrotational or Coriolis effecfs Thus, there are
where I’ is the unit cosymplectic forni38]. But on the  geyera| interacting issues at work in the problem of basis set
coincident level sets, the differential fornd anddD (es-  ntimization in practical problems. However, the problem of
sentially the phase space gradients of the two Hamlltomlanﬁ)hase space coverage is definitely a piece of the puzzle.
are p_roportional, pecause the contour_ surfaces are the same. |, regard to our results on the multidimensional case, we
That is, we can writelK=f dD, wheref is a function whose |56 shown that achieving/C=1+O(#4) is impossible in
value depends on where we are on the common level sefenerg| in the multidimensional case. The best one can hope
K=K, or D= Dq. This means that the flow vectors are pro- ¢y, is B/C=a+0(1), wherea>1 is some constarlt is the
portional, Zx=fZp, which implies that the classical orbits ratio of the volume of the smallest integrable level set en-
generated by these two Hamiltoniai&(t) andZp(t) are  closing the cutoff energy shell to the volume of that energy
the same, to within a time parametrization. But the orbitsshel), and whereo(1) indicates terms that go to 0 ds
Z(t) are the images under the canonical transformation of- 0. It is an open question as to how to find this valueof
the orbitsz,(t) in the original phase space, that is, the orbitsor how to come close to it in practice in a multidimensional
in z=(x,p) generated by the Hamiltoniad (x,p). There-  problem. We mention that we believe our theorem for the
fore at least one of the orbi(t) is chaotic. However, the multidimensional case is related to the apparent impossibility
orbits Zp(t) are all regular. Therefore these orbits cannot beof finding a semiclassical spacing rule for distributed Gaus-
the same, and our assumption, that a smooth canonical transians in this case. We will report on this and other aspects of
formation exists with the required properties, must be wrongthis problem in the future.
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