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Phase space deformation and basis set optimization

Matthew C. Cargo and Robert G. Littlejohn
Department of Physics, University of California, Berkeley, California 94720

~Received 16 February 2001; published 17 January 2002!

By deforming a given region of phase space—occupied by some unknown eigenfunctions one wishes to
find—into a standard, integrable region, effective reductions in basis set size can be achieved. In one-
dimensional problems we are able to achieveB/C511O(\), whereB is the basis set size andC is the
number of ‘‘converged’’ eigenfunctions. This result is confirmed by numerical examples, which also indicate
exponential convergence as the basis set size is increased. In higher dimensions we prove that such an
optimistic result is impossible; we expect that the best one can do in this case isB/C5a1o(1), where
a.1 has a geometric interpretation in terms of ratios of volumes in phase space.
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I. INTRODUCTION

In this paper we develop a strategy which is based
mapping regions of the classical phase space into one
other, for optimizing basis sets for diagonalizing quantu
Hamiltonians. The goal is to minimize the basis set s
when a quantum Hamiltonian must be solved by numer
means, that is, by finding the eigenvectors of its matrix r
resentation in some truncated basis. The selection of the
timized basis set is based on semiclassical notions, but
method we develop is not a semiclassical approximat
since the quantum Hamiltonian is ultimately diagonalized
a complete and orthonormal basis. Semiclassical not
arise, however, because both the basis set and the colle
of unknown eigenfunctions that one wishes to find are r
resented by regions in the classical phase space. When
region occupied by the basis set covers the region occu
by the unknown eigenfunctions with a sufficient margin, t
unknown eigenfunctions will be well converged in that bas
This paper explores the element of flexibility inherent in u
ing canonical transformations to map one region of ph
space into another, thereby transforming standard basis
into new ones that are more efficient for covering a giv
region of phase space.

In view of the practical importance of diagonalizin
Hamiltonian matrices and the rapidly increasing compu
tional effort as a function of the basis set size, the problem
optimizing the basis set for a given quantum Hamiltonian
one that has attracted some attention. The importance of
issue is not restricted to bound state calculations, since p
lar methods for doing scattering calculations involve rep
tive diagonalizations of the Hamiltonian restricted to a su
manifold of configuration space~the hypersphere or a
quotient space thereof! @1–3#. All the methods for basis se
optimization that we are aware of involve or are elucida
by phase space concepts, although this has often not
explicitly acknowledged. Moreover, the specific approa
studied in this paper, of transforming phase space reg
into a standard region, lies behind several methods—b
semiclassical and exact—which have been used in the p

For example, in the semiclassical method of compari
equations@4# a point transformation is used to transform
one-dimensional problem into a solvable problem with
1063-651X/2002/65~2!/026703~12!/$20.00 65 0267
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standard turning point structure, plus correction terms.~A
point transformation is a special case of a canonical trans
mation in which the newQ is a function only of the oldq.!
The same point transformation will emerge in our on
dimensional analysis below. It seems, however, that
method of comparison equations is not usually viewed fr
a phase space standpoint.

Another example arises in the method of distribut
Gaussians@5#, which uses an array of Gaussian wave pack
in configuration space as a nonorthonormal basis. The G
sians are unmodulated~that is, their momentum expectatio
values are zero!. In this method one can use a uniform arr
of Gaussians of equal width, but in one-dimensional pro
lems there is an alternative, or ‘‘semiclassical,’’ spacing r
that reduces the basis set size. Under the semiclassical s
ing rule, the Gaussians are spaced nonuniformly, and t
widths must also be nonuniform in a prescribed manner. A
turns out, the semiclassical spacing rule emerges by perfo
ing a canonical transformation on the phase space of
original system, which transforms the original oval of th
one-dimensional oscillator one is trying to solve into a re
angle~the phase space region for a particle in a box!. This
transformation is singular at the turning points, so in la
versions of the method of distributed Gaussians@6# the trans-
formation is softened out at the turning points. There do
not seem to exist a good multidimensional generalization
the semiclassical spacing rule, a fact which is probably
lated to the impossibility of transforming a nonintegrab
level set into an integrable one~a fact discussed below!. As
far as we know, this point of view regarding the semiclas
cal spacing rule for distributed Gaussians~one which relates
it to a canonical transformation that transforms the ene
contour into a standard shape! is new, but it is not far beneath
the surface in Ref.@5#. More recent work on distributed
Gaussians@7# ~involving random distributions! raises new
considerations, which, however, are outside the main th
of this paper.

A related idea has been pursued by Gygi@8,9# in applica-
tions to solid state physics. Gygi considers point transform
tions in three-dimensional configuration space that prese
the periodicity of a lattice, but reduce the size of the basis
required in quantum calculations. Special attention is giv
to density functional methods. Gygi uses a variation
©2002 The American Physical Society03-1
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principle to optimize the point transformation, which in h
applications can be expanded in a Fourier series. But
does not take any semiclassical ideas into account or dev
the phase space point of view, as far as we know. For
ample, it is not clear how his variational principle is relat
to the volume of the energy shell in the six-dimension
phase space. Nevertheless, effective reductions in basi
size are achieved, and in any case, regardless of interp
tion, it may be that point transformations are the only pr
tical means for transforming phase space regions.

In another study, Fattal, Baer, and Kosloff@10# have ex-
amined point transformations that improve the efficiency o
Fourier series basis for solving quantum problems. Th
authors emphasize the phase space point of view, and
explicit about transforming a complicated phase space re
into a rectangle~a standard form covered by a Fourier ser
basis!. In their paper, they do not attempt to find the exa
transformation that will produce a desired shape of the
gion in the target phase space, even for one-dimensi
problems. Instead, they work with a specific transformati
which is apparently obtained heuristically, and apply it
several model problems.

This approach is improved upon in a later paper@11#, in
which the authors study molecular bound states near di
ciation in potentials with the asymptotic behaviorV;1/r n.
This paper deals with coordinate transformations based
on bounding potentials with the same asymptotic behavio
the exact potential as well as on the exact potential itself
both cases, either the bounding or exact phase space reg
transformed into a rectangle. The authors advocate a ‘‘F
rier grid method’’ ~essentially a sinc-type discrete variab
representation! for solving the transformed wave equatio
although it appears that they only actually solve the tra
formed wave equation for transformations based on bou
ing potentials at zero total energy, for which the action in
gral can be evaluated in simple analytic form. This is
reasonable approach in practice, because the exact actio
tegrals are often difficult, but it means that one does not h
a test of the maximum possible efficiency of the method
phase space mapping.

Several novel approaches to the problem of optimiz
basis sets have been adopted by Poirier@12–14# and by
Poirier and Light@15,16#. In Ref. @12#, Poirier develops a
variational criterion for the ‘‘weakly’’ separable basis that
as close as possible to the eigenbasis of a given Hamilto
~that is, the basis is optimized for this Hamiltonian!. This
theory is applied to reactive scattering in Ref.@13#. Although
this part of the work does not involve phase space conc
very much, such concepts enter in a much more impor
way in Ref.@15#, which uses ‘‘quasiclassical’’~phase space!
approximations to find the optimal ‘‘strongly’’ separab
bases for a variety of multidimensional Hamiltonian
~Strongly separable bases are Cartesian products of
dimensional bases, which can be cast into discrete vari
representation form for efficient computations.! This paper
also develops deformed grids for dealing with multidime
sional problems, and in this respect is similar to the work
Gygi. Poirier has further developed the phase space poin
view in Ref. @14#, in which he develops the ‘‘quasiclassica
02670
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approximation~one which uses the Wigner-Weyl correspo
dence and carries expansions only to lowest order inh!. Fi-
nally, we mention the study of optimized, nonorthonorm
Gaussian bases in Ref.@16#, which achieves a very high ef
ficiency in sample problems, comparable to the efficiency
achieve in this paper, but at the expense of near linear
pendencies of the basis states.

Another approach that attempts to directly target a des
region of phase space is the one that uses lattices of stat
phase space. The lattices are created by taking discrete
groups of some continuous group that supports cohe
states, in the generalized sense of Perelemov@17#. If the
Heisenberg-Weyl group is chosen, then we obtain rectan
lar lattices of states~coherent states in the usual sense@18#, if
the ‘‘fiducial state’’ is Gaussian! in phase space. If the
dilation-translation group is used, then we obtain wavele
in the usual sense of the word.

The idea of using rectangular lattices of coherent state
phase space as a basis set has a long history, which goes
to von Neumann@19# and continues to the present time@20#.
One study that has used such lattices for quantum calc
tions is that of Davis and Heller@21#. Although much can be
said about this approach, it does not usually involve tra
forming phase space regions, and so lies outside the m
line of development of this paper. We merely remark tha
seems to us that lattices of coherent states in phase spac
not competitive with other methods for minimizing basis s
size, especially in multidimensional problems~in spite of the
attractiveness of the basic idea!. We will say more about
coherent state lattices in future publications.

The subject of wavelets@22–25# is an important develop-
ment in applied mathematics in recent years, which has h
big impact on signal processing and other areas. Wave
have also been used for few-body quantum calculati
@26,27#, as well as in many-body density functional calcul
tions @28#. The idea of resolving wave functions on differe
scales is closely related to phase space representation
wave functions, as is made clear in the founding literature
wavelets. The formalism of multiresolution analysis is
elegant way of implementing this idea. However, the wa
lets that are used in multiresolution analysis are nonanal
functions possessing long-range~algebraic! tails in momen-
tum space. Although the order may be high, these tails
ultimately result in power law~not exponential! convergence
for analytic eigenfunctions, and therefore will ultimately r
sult in slower convergence than the analytic basis functi
discussed below. Moreover, as far as we know, wavelets h
not been used in combination with transformations of ph
space.

Our main results are presented in Sec. II. We begin w
an outline of the method. Although the basic ideas have b
presented previously, most explicitly by Fattal, Baer, and K
sloff @10# and by Kokooulineet al. @11#, these authors dis
cussed only the case in which the target region is a rectan
while we generalize to transformations between arbitrary
gions of a fixed topology, including the multidimension
case. Moreover the presentation of these authors of the
of phase space mapping is tangled up with the mapped F
rier method for solving the transformed wave equation, a
3-2
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PHASE SPACE DEFORMATION AND BASIS SET . . . PHYSICAL REVIEW E 65 026703
these two parts of the theory are logically distinct. In ad
tion, we discuss quite a few issues not dealt with by th
authors, including the importance of the analyticity of t
transformation, the relation between classical canon
transformations and unitary transformations, the sugges
of using the metaplectic operators, the analyticity of t
transformation functionX(x) even at the turning points, for
mulas for the Jacobian at the turning points, and the rela
of the present method to the~old! method of comparison
equations. For all these reasons we felt it was importan
present an independent and self-contained presentation o
basic ideas, which we do in Secs. II A and II B. After this w
present numerical results on using harmonic oscillator ba
to solve the Morse oscillator, and we present a theorem
shows that optimal phase space coverage, in the s
achieved for the one-dimensional case, is impossible in g
eral in the multidimensional case. Conclusions are prese
in Sec. III.

II. THE METHOD OF PHASE SPACE DEFORMATION

In this section we begin by outlining the basic idea of t
method of phase space deformation for optimizing basis
in quantum mechanics, and by discussing a simple exam
Next we develop the theory of phase space deformation
one-dimensional problems, which is based on finding a
ordinate transformationX5X(x) that transforms a given re
gion of phase space into a standard region~for example, a
circle!. This part of the presentation should be compared
that of Fattal, Baer, and Kosloff@10# and Kokooulineet al.
@11#, who treat similar subjects. Next we apply this theory
the Morse oscillator. We work out the transformation analy
cally, as far as possible, and then use it to reduce the bas
size required in numerical work. We find that we are able
achieve ratiosB/C quite close to unity. We also examin
various approximate schemes for deforming phase sp
which are easier to implement than the exact one. Som
these give substantial improvements in basis set size, wh
however, are not as great as in the exact case. Finally
present a theorem on the multidimensional case, wh
shows that in general an exact mapping of a given ph
space region into a standard region~for example, a sphere! is
impossible.

A. Outline of the basic idea

Consider a quantum HamiltonianĤ of a few degrees of
freedom. Suppose for simplicity that it is desired to find t
first C converged eigenvalues, where ‘‘converged’’ means
some prescribed accuracy. A basis set is chosen in term
which the Hamiltonian matrix can be computed. The ba
set is truncated at some finite numberB of basis functions,
whereupon the eigenvalues of the Hamiltonian are estim
by the eigenvalues of the truncated,B3B matrix. The sizeB
of the truncation must be chosen large enough so that
first C eigenvalues of the matrix are converged to the p
scribed accuracy. The computational effort is a strongly
creasing function ofB.
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What is the minimum value ofB that can be achieved
The answer depends on the basis. Obviously if we w
clever enough to choose the exact eigenbasis of the Ha
tonianĤ, or a basis such that the firstC basis functions were
linear combinations of the firstC exact eigenfunctions ofĤ,
then the answer would beB5C. In other cases we haveB
.C, exact the ratioB/C>1 is a measure of the goodness
our choice.

We will suppose thatC is large enough that semiclassic
reasoning can be used to guide us in the choice of a basis
In particular, we use the semiclassical rule that all quant
states occupy a region of phase space with volumehf , where
h52p\. and f is the number of degrees of freedom. Th
rule applies both to the unknown eigenstates ofĤ we wish to
find as well as to the basis states.

For example, in a one-dimensional oscillator, we can vi
the firstC energy eigenstates as occupying the region of
classical phase space inside the orbitH(x,p)5E0 , whereE0
is chosen in such a way that the area enclosed by the orb
Ch. HereH(x,p) is the classical Hamiltonian correspondin
to the quantum HamiltonianĤ, where the hat distinguishe
quantum operator from its classical counterpart. On the o
hand, many common choices of basis sets are eigenbas
some analytically solvable operator, which itself may be
Hamiltonian ~the harmonic oscillator Hamiltonian, for ex
ample!. Call this operatorD̂, the ‘‘basis generating opera
tor,’’ which corresponds to the classical functionD(x,p).
Then theB basis functions can be thought of as occupyi
the interior of the regionD(x,p)5D0 , whereD0 is chosen
in such a way that the region has areaBh.

In terms of these regions, the minimum value ofB needed
to find C converged eigenvalues ofĤ has a geometrica
meaning. HoldingC fixed, we increaseB and consider the
errors in the firstC eigenvalues ofĤ. The smallest value of
B for which all C eigenvalues ofĤ are even qualitatively
correct is the one for which the regionD(x,p)5D0 just
covers the regionH(x,p)5E0 . Then, as we increaseB be-
yond this value, we find that the eigenvalues converge ex
nentially in the basis set size.

Figure 1 illustrates these ideas. The curveMO in the fig-
ure is the contour in the classical phase space of the M
oscillator Hamiltonian

H~x,p!5
p2

2
1~e2x21!221, ~1!

whereH(x,p)5E0520.1 in the figure~E521 at the bot-
tom of the well, andE50 is the dissociation energy!. The
curve is the energy shell or level set of the Morse Ham
tonian. ~In this paper, ‘‘level set of the Hamiltonian’’ and
‘‘energy shell’’ are synonymous. In one dimension, these
the same as a classical orbit of a given energy.! The chosen
value ofE0 is sufficiently close to dissociation that the cla
sical motion of the Morse oscillator is strongly anharmon
as evidenced by the stretched and pointed shape of the
tour. The number of quantum states contained inside
energy shell is the area divided byh, the value of which@in
3-3
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MATTHEW C. CARGO AND ROBERT G. LITTLEJOHN PHYSICAL REVIEW E65 026703
the dimensionless units used in Eq.~1!# depends on the prob
lem, that is, the type of molecular bond being modeled by
Morse oscillator, the masses of the atoms, etc. In any c
the number of quantum states is proportional to the area

A simple strategy for finding the energy levels of th
quantum Morse oscillator is to use a harmonic oscillator
sis, which is centered at the bottom of the well of the Mo
potential~at x50 in the figure! with the same frequency a
that of small vibrations in the Morse potential. The Ham
tonian of this harmonic oscillator is

D~x,p!5
p2

2
1x221. ~2!

We estimate the number of basis states needed with this b
by finding the smallest contour valueD0 such that the region
inside D(x,p)5D0 just covers the region insideH(x,p)
5E0 . The level setD(x,p)5D0 is the large circleHO1 in
Fig. 1. In the limit\→0, the ratioB/C approaches the ratio
of the area of the circleD5D0 to that enclosed by the Mors
contourH5E0 .

It is obvious from the figure that this ratio is relative
unfavorable, because of the large amount of ‘‘wasted are
A different harmonic oscillator basis would do better, such
the one with the elliptical contourHO2 in Fig. 1. This sec-
ond harmonic oscillator has a shifted origin and a differ

FIG. 1. Phase space contours of classical Hamiltonians. Con
MO is a Morse oscillator with an energy ofE520.1. The large
circle HO1 is the contour of a harmonic oscillator with paramete
based on small vibrations at the bottom of the Morse oscillator w
The ellipseHO2 is the contour of a different harmonic oscillato
with shifted origin and frequency. Both harmonic oscillator co
tours are chosen to be just large enough to cover the area insid
Morse oscillator contour.
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frequency from the first oscillator and achieves a ratio
areas of approximately 2:1, which is not too bad for a on
dimensional problem.

The idea of using shifted and scaled harmonic oscillat
to improve basis set efficiency is an old one, which eviden
has been used in multidimensional scattering problems, r
tion path Hamiltonians, and model problems. As far as
know, however, these approaches have not made use o
notion of the covering of a desired region of phase space
a basis set, which we believe is a fundamental issue in b
set efficiency.

For any nonzero value of\, the actual number of basi
states required is larger than that estimated by the enclo
area, because the actual wave functions tunnel into the c
sical forbidden regions~both in configuration space and mo
mentum space!. However, the wave functions die off expo
nentially in the tunneling regions, giving us exponent
convergence asB is increased beyond the area estimate.

The following is a semiclassical way of understanding t
exponential convergence that sets in asB increases after the
area of the classical oscillator is covered. Let the exact~pre-
sumed unknown! eigenstates of the problem we are trying
solve ~the Morse oscillator in the example! be un&, and the
basis states beua&. Then the expansion coefficients of th
exact eigenstates in terms of the basis states are^aun&. If we
evaluate this scalar product by using the semiclassical
proximations to the exact eigenfunctions and the basis fu
tions, then the integral is dominated by the stationary ph
points of the integrand. But these stationary phase points
geometrically just the intersections of the curvesH5En for
the Hamiltonian with unknown eigenfunctions andD5Da
for the basis generating operator~more generally, they are
the intersections of Lagrangian manifolds in phase sp
@29#!. However, if the classical contourD5Da lies outside
the contourH5En , then there are no~real! intersections.
There will, however, be complex ones, corresponding
complex actionsS whose imaginary parts increase as t
basis contours expand. Thus, expansion coefficients^aun&,
which go aseiS/\, decrease exponentially. Notice that th
argument relies on the analyticity of the functionsH(x,p)
andD(x,p); indeed, exponential convergence does not u
ally hold when either function has singularities~divergences
or discontinuities in some derivative of the potential, for e
ample!.

To return to our example, Fig. 1 shows that even the b
choice of harmonic oscillator basis will have some was
area, because the Morse level sets are not ellipses. If, h
ever, we could perform a canonical transformation on
phase space of the Morse oscillator, which would transfo
the energy shellH5E0 into ~say! a circle, then a circular
harmonic oscillator basis would precisely cover the inter
of the transformed Morse oscillator energy shell. Notice t
we are not trying to transform the Morse oscillator into
harmonic oscillator; this cannot be done in any case, si
the harmonic oscillator has a constant frequency and
Morse oscillator has a frequency that depends on the am
tude. All we are trying to do is to transform one speci
contour of the Morse oscillatorH5E0 into a circle. The
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PHASE SPACE DEFORMATION AND BASIS SET . . . PHYSICAL REVIEW E 65 026703
other level sets of the Morse oscillator, forH,E0 and H
.E0 , will have images under the canonical transformat
that are not circles.

More generally, we may seek a canonical transformat
that will transform the level set of some classical Ham
tonian whose quantum counterpart we wish to solve ou
some energyE0 into the level set of some conveniently sol
able problem. There is then the practical matter of using
eigenbasis of the solvable problem in the transformed v
ables to solve the original quantum problem in the origi
variables. We may wish to carry out this program in one
more degrees of freedom.

B. Phase space deformation in one dimension

We now develop the theory of phase space deformatio
one dimension. The multidimensional case raises new is
and will be discussed below. We begin with a HamiltonianĤ
whose classical counterpart isH(x,p) and a conveniently
solvable HamiltonianD̂ whose classical counterpart
D(X,P). The use of capitalized variables~X,P! for the argu-
ments of D will be explained momentarily. As explaine
above, the basis functions will be the eigenfunctions ofD̂.
For simplicity we will assume that bothH and D have
kinetic-plus-potential form

H~x,p!5
p2

2m
1V~x!, D~X,P!5

P2

2
1U~X!, ~3!

with analytic potentialsV(x) andU(X), although our results
are easily generalized to analytic Hamiltonians of a m
general form. Many of the steps below are independen
the specific form of these Hamiltonians. The variables~X,P!
are assumed to be suitably dimensionless, hence the abs
of a mass parameter inD(X,P).

Now suppose that some energyE0 is given, such that it is
desired to find all energy eigenvalues and eigenfunction
Ĥ below E0 . The level setH(x,p)5E0 of the classical
Hamiltonian is some curve in phase space with some to
ogy. Because of the time-reversal invariance ofH, this curve
is symmetric about thex axis. In general, this curve consis
of one or more disconnected pieces. We assume that on
these pieces is a topological circle, that is, an oval of so
kind centered on thex axis, with two turning points that we
denote byx0 and x1 (x0,x1). These are the roots inx of
H(x,0)5E0 . If there are other disconnected pieces of t
level setH(x,p)5E0 , then we have tunneling from one o
cillatory region~betweenx0 andx1! to perhaps other oscil
latory regions or perhaps unbounded~scattering! regions. For
simplicity, we will assume for now that the level setH
5E0 consists only of a single topological circle, so that the
is no tunneling. We will comment below about more comp
cated cases.

We now seek a canonical transformation (x,p)→(X,P)
such that the level setH(x,p)5E0 in the old variables is
mapped into a level set ofD(X,P)5D0 in the new variables
for some value ofD0 . Since canonical transformations pr
serve area, the area of the old level set must be equal to
area of the new one
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where p(x,E0) and P(X,D0) are the respective local mo
menta

p~x,E0!5A2m@E02V~x!#, P~X,D0!5A2@D02U~X!#.
~5!

Thus, Eq.~4! definesD0 as a function ofE0 . It is assumed
thatD(X,P) has a level set of the required area, and that i
a topological circle. OnceD0 is known, we can find the
turning points of the curveD(X,P)5D0 , call themX0 and
X1 (X0,X1).

The functional form ofH changes upon carrying out th
canonical transformation. We call the new functional for
K(X,P), so that

K~X,P!5H„x~X,P!,p~X,P!…. ~6!

By construction, the level setK(X,P)5E0 is the same curve
in the new phase space as the level setD(X,P)5D0 . The
two functionsK(X,P) andD(X,P) are not expected to hav
other level sets in common, however~only for the contour
valuesE0 andD0!.

Since our entire approach is based on semiclassical
tions, in which the wave function varies on a scale mu
smaller than that of the classical Hamiltonian, we requ
that our canonical transformation does not introduce a
short scale lengths of its own. This means that our canon
transformation should be analytic~at least in the region of
interest! and independent of\. In particular, we must exclude
canonical transformations that have discontinuities, eithe
the transformation itself or in one of its derivatives. One ca
in practice where this condition has not been met is in
proaches in which the standard region in the transform
phase space is a rectangle.

Our strategy will be to use the eigenfunctions ofD̂, the
quantum analog ofD(X,P), as a basis to find the eigenfunc
tions of K̂, the quantum analog ofK(X,P), and hence the
eigenfunctions ofĤ. However, to pursue this idea we mu
have the quantum analog of the classical canonical trans
mation (x,p)→(X,P), which would be some unitary trans
formation. In general, the relationship between canon
transformations in classical mechanics and unitary trans
mations in quantum mechanics is not simple, due to orde
issues, topological matters, phase factors, higher order te
in \, etc. In cases where the classical transformation
smooth and certain topological conditions are met, Mil
@30# has presented a theory that associates a canonical t
formation with a semiclassical approximation to the mat
elements of a corresponding unitary transformation. Ho
ever, Miller’s matrix elements have caustics and do not
actly satisfy the unitarity conditions~they do so only in a
semiclassical sense!. Therefore, they are not suitable for ou
purposes where it is necessary to carry out an exact un
transformation on wave functions.

Therefore, we must restrict the consideration to canon
transformations that correspond semiclassically to so
3-5
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MATTHEW C. CARGO AND ROBERT G. LITTLEJOHN PHYSICAL REVIEW E65 026703
known unitary transformation. The correspondence need
be exact~for example, there might be higher order terms
\!, because our purpose is merely to optimize the basis.
the corresponding transformation on the quantum wave fu
tions should be exactly unitary, and, as a practical matte
should be easy to implement.

There are two classes of canonical transformations
come to mind satisfying these requirements. The first c
sists of the point transformations, which in the present no
tion are canonical transformations of the form

X5X~x!, P5~]x/]X!p, ~7!

whereX(x) is a given function, which are generated by t
type-2 generating function@31# F2(x,P)5PX(x). Point
transformations can be regarded as merely changes of c
dinates in configuration space, which are promoted into
nonical transformations by appending the momentum tra
formation law@the second of Eqs.~7!#. The latter is written
more transparently asp dx5P dX.

If we denote the old and new wave functions unde
point transformation byc(x) and C(X), and demand tha
the normalization integrals transform according to

E dxuc~x!u25E dXuC~X!u2, ~8!

then the relation between the old and new wave function

c~x!5J1/2C~X!, ~9!

whereJ5]X/]x is the Jacobian of the transformation. W
will assume that the transformationX(x) is monotonically
increasing, soJ.0 everywhere.

The second class consists of the linear canonical trans
mations, which correspond in quantum mechanics to the
tary metaplectic transformations@32#. The point transforma-
tions form a rather restricted set of canonic
transformations, but by composing them with linear cano
cal transformations in various orders it is possible to gene
a much larger set@33#. However, the action of the metaple
tic operators on wave functions is given by an integral tra
form, which at first sight seems more difficult to use than E
~9!, although probably fast metaplectic transforms could
implemented. Also, it would seem that linear canonical tra
formations would complicate the computation of matrix e
ments of the potential energy.

Therefore in this paper we have restricted the consid
ation to just the point transformations. This is the same c
of transformations considered previously by Gygi@8,9# and
Fattal, Baer, and Kosloff@10#, so we have nothing new in
this respect, except for a larger conceptual framework
the possibility of a larger class of transformations in futu
work. However, thinking in terms of canonical transform
tions has definite advantages, as will be apparent in our
cussion of the multidimensional case.

If we were to seek an unrestricted canonical transform
tion that would map the given level setH(x,p)5E0 into the
level setD(X,P)5D0 , with D0 defined by Eq.~4!, then
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there would be many possible solutions. However, if we
strict to point transformations, then the solution is essentia
unique, as we will show now.

Let us seek a point transformationX(x) such that the
level setH(x,p)5E0 is mapped into the level setD(X,P)
5D0 . The transformation should also map turning poin
into one another,X(x0)5X0 andX(x1)5X1 . In view of Eq.
~7!, the transformation functionX(x) must satisfy the differ-
ential equation

dX

dx
5

p~x,E0!

P~X,D0!
. ~10!

The single constant of integration is fixed by the conditi
X(x0)5X0 , which gives

E
x0

x

p~x,E0!dx5E
X0

X

P~X,D0!dX. ~11!

This is an implicit solution forX(x). The right turning point
conditionX(x1)5X1 is not an extra condition, but rather i
satisfied automatically in view of Eq.~4!.

Equation ~11! definesX(x) between the turning points
but for transforming the wave function as in Eq.~9! we need
X(x) for all x ~or at least forx far enough outside the turnin
points thatc becomes negligible!. It turns out that the solu-
tion ~11! has a well behaved analytic continuation outside
turning points, although the differential equation~10! itself is
quite singular at the turning points, as are all of its solutio
except the one given by Eq.~11!, with the value ofD0 de-
termined by Eq.~4!.

Regarding singularities, consider first the left turnin
point x0 . If the transformation functionX(x) does not satisfy
the conditionX(x0)5X0 , thendX/dx vanishes atx5x0 and
diverges atX5X0 . Thus the conditionX(x0)5X0 is neces-
sary for the point transformation to be smooth and sin
valued. Similarly, if the value ofD0 does not satisfy the are
condition~4! ~perhaps due to numerical error!, then when the
integrals in Eq.~11! are carried to the right turning poin
there will be zeros or infinities indX/dx.

However, if the turning point conditions are satisfied, th
although bothp and P go to zero at a turning point, thei
ratio remains finite and well behaved as the turning poin
approached. In fact, by expanding bothV(x) and U(X)
about the turning point and taking the limit, it is easy to sho
that the Jacobian approaches the value

J5
dX

dx
5S mV8~x!

U8~X! D 1/3

, ~12!

whereV8 andU8 are evaluated at the turning point. We w
assume thatV8 andU8 are nonzero at the turning points, s
J has a positive value there. Similarly higher order deriv
tives of X(x) can be evaluated at the turning points in term
of derivatives of the two potentials, although the expressi
rapidly become complicated.

The differential equation~10! can be analytically contin-
ued outside the turning points by choosing branches of
square roots forp and P ~now both purely imaginary! such
3-6
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PHASE SPACE DEFORMATION AND BASIS SET . . . PHYSICAL REVIEW E 65 026703
that their real ratio approaches the value~12! as the turning
points are approached from the classically forbidden regio
In this way a single transformation functionX(x) is defined,
which is analytic in all regions, classically allowed and cla
sically forbidden. If, however, there are more than two tu
ing points, and ifx is taken as far as one of these ex
turning points, then the solutionX(x) will develop a singu-
larity.

The transformationX(x) developed above is the sam
that is used in the method of comparison equations@4# for
analyzing two-turning point problems~whereD is taken to
be a harmonic oscillator!. The method of comparison equa
tions is not able to handle systems with three or more turn
points, for lack of a solvable comparison equation with t
same turning point structure. In our method, however, lar
numbers of turning points are not necessarily a proble
Consider, for example, a double well oscillator. If the tunn
ing is deep for a given energyE0 , then the communication
between wells may be negligible, and we can just use
solutionX(x) developed above for a single well. In this ca
we need takex only halfway to the other well, where th
wave function is negligible, and we never encounter any s
gularity in X(x). On the other hand, if the tunneling is sha
low, then we can always raise the cutoff energyE0 above the
top of the barrier, and we have once again a system with
turning points, and both wells can be handled at once.

However, this approach will not work if there is tunnelin
to an unbounded region~meaning we have a resonance in
scattering problem!. For simplicity we will exclude un-
bounded or scattering problems from our consideration
this paper.

We now transform the Schro¨dinger equation under th
point transformation~7!. The old Schro¨dinger equation is
Ĥc5Ec, where

Ĥ5
p̂2

2m
1V~ x̂!, ~13!

with p̂52 i\(]/]x). Then writingP̂52 i\(]/]X) we have
p̂5JP̂ and the operator identity

JP̂J1/25J1/2S P̂J1JP̂

2
D . ~14!

Thus we can write the new Schro¨dinger equation in the form
K̂C5EC, where

K̂5
1

2m
S P̂J1JP̂

2
D 2

1V„x~X̂!…. ~15!

We wish to solve this in the eigenbasis ofD̂5 P̂2/2
1U(X̂).

We remark that if we use the Weyl symbol correspo
dence to map quantum operators into classical functio
then the classical Hamiltonian corresponding to Eq.~15! is

K~X,P!5
J2P2

2
1V„x~X!…, ~16!
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which coincides with the result of carrying out the classic
canonical transformation~7! on the HamiltonianH(x,p).
The Weyl transform provides an elegant way of maki
semiclassical approximations on Hamiltonians of a rat
general functional form@34#.

C. Results for the Morse oscillator

We will now test the effectiveness of the phase spa
deformation method by using it to solve the Morse oscillat
The Morse oscillator is especially useful for our purpos
because the curveH(x,p)5E0 becomes increasingly dis
torted asE0 approaches the oscillator’s dissociation ener
This allows us to test the deformation method under a
trarily severe deformations.

The Morse oscillator Hamiltonian of Eq.~1! has been
presented in dimensionless units in which the physical pr
erties are parametrized by\. In these units, the energyE of a
bound orbit satifies21<E,0. The exact energy eigenva
ues are given by@35#

En52 1
2 ~ I 2& !2, ~17!

whereI 5(n11/2)\ andn50,1,...@the maximum value ofn
is the last one before the peak of the quadratic funct
En(I )#. Typical values of\ for molecular systems range from
about 1021– 1022, corresponding to approximately 10–10
bound states. We chooseD(X,P) of Eq. ~3! to be the har-
monic oscillator Hamiltonian

D~X,P!5P2/21X2/2. ~18!

We will now use Eq.~11! to determine the function
x(X) that, for correctly chosenD0 , maps the level se
H(x,p)5E0 into D(X,P)5D0 . At energy E0 , the
Morse oscillator has turning pointsx052 ln(11k) and
x152 ln(12k), wherek5A11E0. At energyD0 , the har-
monic oscillator has turning pointsX152X05A2D0. We
define f (x)5*x0

x p(x,E0)dx andF(X)5*X0

X P(X,D0)dX, so

that the implicit solution isf (x)5F(X). ForX0,X,X1 and
x0,x,x1 , we find

F~X!5
XP

2
1D0 tan21~X/P!1

p

2
D0 , ~19!

and

f ~x!52p1&Fsin21S 12e2x

k D
1A12k2 sin21S e2x211k2

ke2x D1
p

2
~12A12k2!G ,

~20!

where P5P(X,D0) and p5p(x,E0). Equation ~4! now
fixes D05 f (x1)/p5&(12A12k2).

Similarly, for X,X0 andx,x0 or X.X1 andx.x1 , the
solution isg(x)5G(X), where
3-7
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MATTHEW C. CARGO AND ROBERT G. LITTLEJOHN PHYSICAL REVIEW E65 026703
G~X!5
XP̄

2
2D0 lnUX1 P̄

X0
U, ~21!

and

g~x!52 p̄1& lnU~ p̄/& !1e2x21

k U
1A2~12k2! lnUe2x211k22~ p̄/& !A12k2

ke2x U,
~22!

whereP̄5AX222D0 and p̄5A2@V(x)2E0#.
It turns out later that we will need to evaluate the functi

x(X) numerically. We do this by finding the roots of equ
tions f (x)5F(X) or g(x)5G(X). In this process, one mus
take considerable care in evaluating Eqs.~19!–~22! to avoid
loss of precision. A related numerical difficulty appears wh
we need to evaluateJ near the turning points, due to the lo
of precision in computingp or P according to Eq.~5!. In fact,
it does not seem to be easy to evaluateJ to maximum preci-
sion near the turning points. We have found, however, t
the error introduced by simply using Eq.~5! did not seem to
adversely affect our results.

In spite of the numerical difficulties of evaluatingx(X)
near the turning points, the function itself is perfectly w
behaved there. This is shown quite clearly in Fig. 2, which
a plot of x(X) for E0520.1. The turning points are indi
cated in the figure; were this not done, it would be impo
sible to locate them from the plot itself.

FIG. 2. Functionx(X) that deforms theE0520.1 shell of the
Morse oscillator into a circle. Vertical and horizontal lines mark t
turning points of the harmonic oscillator and the Morse oscilla
respectively.
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Now we turn to the diagonalization ofK̂ in the harmonic
oscillator basis. We will be interested in testing the conv
gence of the eigenvalues ofK̂ ~which of course are the sam
as the eigenvalues ofĤ! as the sizeB of the basis is in-
creased.

First we need the matrix elements of the potential ene
V„x(X)…. In principle, these could be evaluated by a
quadrature formula~such as Simpson’s rule! with a sufficient
number of integration points, but nowadays in problem
such as this, it is popular to transform to the so-called d
crete variable representation~DVR! basis@36,37#. In this ba-
sis, the potential energy~or any other function of onlyX! is
diagonal to a good approximation, and the matrix eleme
are trivial. It is also easy to transform back to the origin
basis~the harmonic oscillator basis in this case!, because the
unitary transformation between the bases can be expre
exactly in terms of the original basis functions evaluated a
set of DVR grid points. The latter are the zeros of a cert
one of the original basis functions. The DVR method is
convenient for finding matrix elements of operators, whi
depend only onX, that we wanted to use it for our calcula
tion.

However, the DVR method for evaluating matrix el
ments introduces a certain error, because functions ofX are
not exactly diagonal in the DVR basis. Since the purpose
this paper is to test the error in the method of phase sp
deformation, we did not want to contaminate the results w
additional errors. Therefore, when we switched to the DV
basis we used a larger number of DVR grid points than
numberB of harmonic oscillator basis functions we we
using. The number of DVR grid points we chose was su
ciently large that we got convergence in the matrix eleme
typically, this was aboutB110.

In this manner, we determined the matrix elements
V„x(X)…. Similarly, we determined the matrix elements
the JacobianJ, which is also a function only ofX. The matrix
elements of the momentumP are easy in the harmonic os
cillator basis. From these, by matrix multiplication, we d
termined the matrix elements of the operatorPJ, whose Her-
mitian part is (PJ1JP)/2. Finally, squaring the matrix o
the latter operator, we obtained the matrix elements of
kinetic energy term inK̂, seen in Eq.~15!. In these matrix
multiplications, we used a basis whose size was somew
larger thanB, again in order to avoid introducing extra erro
If one were interested in a practical algorithm, rather th
testing the method, it would probably be more convenien
carry out the entire calculation in bases of a fixed size~which
would have to be somewhat larger than theB values we
quote to get the same accuracy!.

Finally, we diagonalized the matrix to obtain approxima
energy eigenvalues. We defined an accuracy parametere for
an eigenvalue to be the fractional error relative to the bott
of the well, that is,

e5uE2Ẽu/~E11!, ~23!

whereE is the exact eigenvalue andẼ is the approximate
one.

,

3-8
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In one study, we examined how the number of basis st
B required to achieve convergence depends on the en
cutoff E0 and on the number of converged eigenstatesC. We
varied C for the fixedE0 by changing\. In this study, we
considered theC eigenstates to be converged if the state w
the maximum relative error~which was always the las
eigenstate withE<E0! hade,1027. The results are shown
in Fig. 3. It turns out that the differenceB2C is nearly
constant for a givenE0 , so we plottedB2C versusC at
different energies. As expected, it requires a larger numbe
basis states to converge when the cutoff energyE0 is closer
to dissociation, but even atE0520.01 ~a strongly distorted
oval! we find B/C'1.1 for C560. The results can be sum
marized by

B

C
511

k

C
, ~24!

wherek is a constant depending onE0 but not onC. Equiva-
lently, since for fixedE0 C is proportional to 1/\, we can say
B/C511O(\).

In another study we examined the convergence for fi
energy cutoffE0 and fixedC ~hence fixed\! as the number
of basis statesB is increased. We definedemax as the maxi-
mum value ofe, given by Eq.~23!, for the firstC eigenstates.
In all cases, the maximum occurred either for the last s
~usually!, or occasionally for the next to the last state. Th
maximum error is plotted as a function ofB for two different
cases in Fig. 4. The convergence is rapid, but apparently
as fast for energies nearer the separatrix, as would be
pected.

Finally, we present in Fig. 5 a plot of the relative errore
as a function of the quantum numbern for the cutoff energy

FIG. 3. Excess of basis states over converged eigenstates~dif-
ferenceB2C! versus number of converged eigenstatesC, for three
different energies. Eigenstates are considered converged whe
relative errore,1027. For givenE,C is varied by varying\. The
differenceB2C is approximately constant for givenE.
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E0520.1 and a value ofh chosen to giveC524 states~n
50 to n523!. The number of basis states used wasB528.
Note the sharp decrease in accuracy for states that are
within the target region; effectively, our basis has used all
energies for the states inside the target region, and has
left for states outside.

An obvious drawback to the method we have presented
far is that the functionx(X) is difficult to compute. In the

the
FIG. 4. Maximum relative errore among firstC computed ei-

genvalues as a function of basis set sizeB.

FIG. 5. Relative errore versus quantum numbern for E05
20.1, which corresponds to 24 bound states (n50 – 23). B528
basis states were used.
3-9
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case of the Morse potential we were able to do the ac
integrals yieldingf (x) and g(x) analytically, but the final
forms were not simple. For other potentials it will be impo
sible to do these integrals analytically. Moreover, even giv
an analytic form, the functionsf (x) andg(x) may be subject
to loss of precision near turning points, as we have found
the case of the Morse potential.

On the other hand, Fig. 2 shows that the functionx(X) is
a rather featureless, monotonic function, which it should
possible to approximate with functions of simple analy
form. Such approximations would not be as effective as
exact x(X) in reducing basis set size, of course, but th
might still be useful. In fact, it occurred to us that even
crude numerical evaluation of the functionx(X), say, with
10% accuracy, might still be very effective in reducing t
basis set size. To test these ideas we studied various si
approximations tox(X). In all of the following studies, we
took E0520.1.

The simplest approximation is a linear one. Any line
function x(X) will map harmonic oscillators into other ha
monic oscillators. Thus, the standard harmonic oscilla
~18! in the ~X,P! phase space will correspond to another h
monic oscillator in the original~x,p! phase space, but with
elliptical contours. The first example we looked at was
straight line fit between the turning points (X0 ,x0) and
(X1 ,x1) in Fig. 2. This corresponds to choosing a harmo
oscillator back in the original~x,p! phase space that has th
same turning points as the Morse oscillator, and the sa
area between those turning points. In this case, we found
achievinge51023 requiredB to be about 2C. For compari-
son, 1023 accuracy could be achieved as early asB5C us-
ing the exactx(X), as shown in Fig. 4. Figure 6 shows th

FIG. 6. Harmonic oscillator coverage of the Morse oscillator
E0520.1. The harmonic oscillator contourA has the same turning
points and same area as the Morse oscillator cutoff contour.
monic oscillator contourB has twice the energy of harmonic osc
lator A. This is not the most efficient harmonic oscillator for cove
ing the Morse oscillator.
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Morse oscillator and the mapped harmonic oscilla
~markedA in the figure! in the original~x,p! phase space. It is
clear that the wasted area is due to the strong deformatio
the Morse oscillator contour, which does not fit an ellip
very well. To cover the area of the Morse oscillator with
harmonic oscillator of these parameters, the harmonic os
lator energy must be increased to approximately 2D0 , as
indicated by the contourB in the figure.

Other linear approximationsx(X) work better. For ex-
ample, by changing the two linear fit parameters, we fou
an x(X) that covers the Morse oscillator with an energy
1.7D0 ~this is the ellipseHO2 in Fig. 1!. Indeed, with\
50.03, 54 basis states are needed to converge the 32 int
states toe,1023.

Finally, we investigated some nonlinear fits tox(X). One,
a combination of a quadratic and an exponential, fit parti
larly well in the classically allowed region. Here, for\
50.03,B538 states were needed to obtainC532 states to
e,1027. This is three basis states more than required by
exactx(X), but still considerably better than any linear fit

In the problem of determining approximate fits to th
function x(X), high accuracy may not be required, but it
important that the approximate function be smooth. For
ample, piecewise analytic functions would not do~owing to
the nonanalyticities where the functions are pieced togeth!.
Thus it is not trivial to design approximate fits. We could
more motivated to pursue this question if determining a la
number of eigenvalues for one-dimensional problems onR
were a common problem in practice. However, the same
sues are certainly present in more realistic problems~multi-
dimensional problems on spaces of less trivial topology!.

D. The multidimensional case

We turn now to the multidimensional case. Our main
sult here is to show that it is impossible, by means of a
canonical transformation, to transform the level setH5E0 of
a generic, multidimensional Hamiltonian system into t
level setD5D0 of a solvable~that is, integrable! system.
Not surprisingly, this result depends on the impossibility
transforming nonintegrable motion into integrable motio
But it is not quite as trivial as it seems, because we are
trying to transform a nonintegrable Hamiltonian entirely in
an integrable one, merely a single level set.

As before, letH(x,p) be the classical analog of a qua
tum HamiltonianĤ whose eigenvalues and eigenfunctio
we wish to find out to energyE0 . Now, however,x andp are
n-dimensional vectors~their components arexi and pi!.
Similarly, D(X,P) is an integrable Hamiltonian ofn degrees
of freedom whose quantum counterpart we will use as a b
generating operator. We assume thatH(x,p) is chaotic~it has
at least one chaotic orbit of energyE0 , which would be the
usual case in practice!. On the other hand,D(X,P) has only
regular orbits~the level setD5D0 is foliated into invariant
tori, on which the classical orbits are quasiperiodic!. Then
there does not exist any smooth canonical transforma
(x,p)→(X,P) that maps the given level setH(x,p)5E0
into a level setD(X,P)5D0 for any value ofD0 .

r

r-
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PHASE SPACE DEFORMATION AND BASIS SET . . . PHYSICAL REVIEW E 65 026703
Suppose on the contrary that such a canonical transfor
tion exists, and letK(X,P) be the new Hamiltonian, as in
Eq. ~6!. Then the level setK(X,P)5E0 in the new phase
space coincides with some level setD(X,P)5D0 , for some
value of D0 . These level sets have dimensionality 2n21.
Let Z5(X,P) be the 2n phase space coordinates in the n
phase space, with componentsZm, m51,...,2n. Consider
Hamilton’s equations for the two HamiltoniansK(X,P) and
D(X,P). The respective flow vectors are given by

ŻK
m5Gmn

]K

]Zn , ŻD
m5Gmn

]D

]Zn , ~25!

where Gmn is the unit cosymplectic form@38#. But on the
coincident level sets, the differential formsdK and dD ~es-
sentially the phase space gradients of the two Hamiltonia!
are proportional, because the contour surfaces are the s
That is, we can writedK5 f dD, wheref is a function whose
value depends on where we are on the common level
K5K0 or D5D0 . This means that the flow vectors are pr
portional, ŻK5 f ŻD , which implies that the classical orbit
generated by these two Hamiltonians,ZK(t) and ZD(t) are
the same, to within a time parametrization. But the orb
ZK(t) are the images under the canonical transformation
the orbitszH(t) in the original phase space, that is, the orb
in z5(x,p) generated by the HamiltonianH(x,p). There-
fore at least one of the orbitsZK(t) is chaotic. However, the
orbits ZD(t) are all regular. Therefore these orbits cannot
the same, and our assumption, that a smooth canonical t
formation exists with the required properties, must be wro
.
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III. CONCLUSION

We have shown that phase space concepts offer a g
way to understand the effectiveness of a basis set. In par
lar, we have used phase space concepts to construct a
distinct from the actual eigenbasis of the Hamiltonian th
covers the target phase space with high efficiency and
fast exponential convergence as the basis set is expanded
have also proven a theorem, which shows that optimal c
erage is not possible, in general, in the multidimensio
case.

Any study involving one-dimensional problems onR is at
best useful mainly for its suggestive value, since practi
problems take place on multidimensional configurati
spaces, often with a nontrivial topology and in the prese
of gauge fields~rotational or Coriolis effects!. Thus, there are
several interacting issues at work in the problem of basis
optimization in practical problems. However, the problem
phase space coverage is definitely a piece of the puzzle

In regard to our results on the multidimensional case,
have shown that achievingB/C511O(\) is impossible in
general in the multidimensional case. The best one can h
for is B/C5a1o(1), wherea.1 is some constant~it is the
ratio of the volume of the smallest integrable level set e
closing the cutoff energy shell to the volume of that ener
shell!, and whereo(1) indicates terms that go to 0 as\
→0. It is an open question as to how to find this value ofa,
or how to come close to it in practice in a multidimension
problem. We mention that we believe our theorem for t
multidimensional case is related to the apparent impossib
of finding a semiclassical spacing rule for distributed Ga
sians in this case. We will report on this and other aspect
this problem in the future.
e
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